Machine Learning Street Talk (MLST)

Un pódcast de Machine Learning Street Talk (MLST)

Categorías:

208 Episodo

  1. John Palazza - Vice President of Global Sales @ CentML

    Publicado: 10/3/2025
  2. Transformers Need Glasses! - Federico Barbero

    Publicado: 8/3/2025
  3. Sakana AI - Chris Lu, Robert Tjarko Lange, Cong Lu

    Publicado: 1/3/2025
  4. Clement Bonnet - Can Latent Program Networks Solve Abstract Reasoning?

    Publicado: 19/2/2025
  5. Prof. Jakob Foerster - ImageNet Moment for Reinforcement Learning?

    Publicado: 18/2/2025
  6. Daniel Franzen & Jan Disselhoff - ARC Prize 2024 winners

    Publicado: 12/2/2025
  7. Sepp Hochreiter - LSTM: The Comeback Story?

    Publicado: 12/2/2025
  8. Want to Understand Neural Networks? Think Elastic Origami! - Prof. Randall Balestriero

    Publicado: 8/2/2025
  9. Nicholas Carlini (Google DeepMind)

    Publicado: 25/1/2025
  10. Subbarao Kambhampati - Do o1 models search?

    Publicado: 23/1/2025
  11. How Do AI Models Actually Think? - Laura Ruis

    Publicado: 20/1/2025
  12. Jurgen Schmidhuber on Humans co-existing with AIs

    Publicado: 16/1/2025
  13. Yoshua Bengio - Designing out Agency for Safe AI

    Publicado: 15/1/2025
  14. Francois Chollet - ARC reflections - NeurIPS 2024

    Publicado: 9/1/2025
  15. Jeff Clune - Agent AI Needs Darwin

    Publicado: 4/1/2025
  16. Neel Nanda - Mechanistic Interpretability (Sparse Autoencoders)

    Publicado: 7/12/2024
  17. Jonas Hübotter (ETH) - Test Time Inference

    Publicado: 1/12/2024
  18. How AI Could Be A Mathematician's Co-Pilot by 2026 (Prof. Swarat Chaudhuri)

    Publicado: 25/11/2024
  19. Nora Belrose - AI Development, Safety, and Meaning

    Publicado: 17/11/2024
  20. Why Your GPUs are underutilised for AI - CentML CEO Explains

    Publicado: 13/11/2024

1 / 11

Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).

Visit the podcast's native language site