Towards Data Science

Un pódcast de The TDS team

Categorías:

131 Episodo

  1. 51. Adrien Treuille and Tim Conkling - Streamlit Is All You Need

    Publicado: 16/9/2020
  2. 50. Ken Jee - Building your brand in data science

    Publicado: 9/9/2020
  3. 49. Catherine Zhou - The data science of learning

    Publicado: 2/9/2020
  4. 48. Emmanuel Ameisen - Beyond the jupyter notebook: how to build data science products

    Publicado: 26/8/2020
  5. 47. Goku Mohandas - Industry research and how to show off your projects

    Publicado: 19/8/2020
  6. 46. Ihab Ilyas - Data cleaning is finally being automated

    Publicado: 12/8/2020
  7. 45. Kenny Ning - Is data science merging with data engineering?

    Publicado: 5/8/2020
  8. 44. Jakob Foerster - Multi-agent reinforcement learning and the future of AI

    Publicado: 29/7/2020
  9. 43. Ian Scott - Data science at Deloitte

    Publicado: 22/7/2020
  10. 42. Will Grathwohl - Energy-based models and the future of generative algorithms

    Publicado: 15/7/2020
  11. 41. Solmaz Shahalizadeh - Data science in high-growth companies

    Publicado: 8/7/2020
  12. 40. David Meza - Data science at NASA

    Publicado: 1/7/2020
  13. 39. Nick Pogrebnyakov - Data science at Reuters, and the remote work after the coronavirus

    Publicado: 24/6/2020
  14. 38. Matthew Stewart - Data privacy and machine learning in environmental science

    Publicado: 17/6/2020
  15. 37. Sean Knapp - The brave new world of data engineering

    Publicado: 10/6/2020
  16. 36. Max Welling - The future of machine learning

    Publicado: 3/6/2020
  17. 35. Rubén Harris - Learning and looking for jobs in quarantine

    Publicado: 27/5/2020
  18. 34. Denise Gosnell and Matthias Broecheler - You should really learn about graph databases. Here’s why.

    Publicado: 20/5/2020
  19. 33. Roland Memisevic - Machines that can see and hear

    Publicado: 13/5/2020
  20. 32. Bahador Khalegi - Explainable AI and AI interpretability

    Publicado: 6/5/2020

5 / 7

Note: The TDS podcast's current run has ended. Researchers and business leaders at the forefront of the field unpack the most pressing questions around data science and AI.

Visit the podcast's native language site