Towards Data Science
Un pódcast de The TDS team
Categorías:
131 Episodo
-
51. Adrien Treuille and Tim Conkling - Streamlit Is All You Need
Publicado: 16/9/2020 -
50. Ken Jee - Building your brand in data science
Publicado: 9/9/2020 -
49. Catherine Zhou - The data science of learning
Publicado: 2/9/2020 -
48. Emmanuel Ameisen - Beyond the jupyter notebook: how to build data science products
Publicado: 26/8/2020 -
47. Goku Mohandas - Industry research and how to show off your projects
Publicado: 19/8/2020 -
46. Ihab Ilyas - Data cleaning is finally being automated
Publicado: 12/8/2020 -
45. Kenny Ning - Is data science merging with data engineering?
Publicado: 5/8/2020 -
44. Jakob Foerster - Multi-agent reinforcement learning and the future of AI
Publicado: 29/7/2020 -
43. Ian Scott - Data science at Deloitte
Publicado: 22/7/2020 -
42. Will Grathwohl - Energy-based models and the future of generative algorithms
Publicado: 15/7/2020 -
41. Solmaz Shahalizadeh - Data science in high-growth companies
Publicado: 8/7/2020 -
40. David Meza - Data science at NASA
Publicado: 1/7/2020 -
39. Nick Pogrebnyakov - Data science at Reuters, and the remote work after the coronavirus
Publicado: 24/6/2020 -
38. Matthew Stewart - Data privacy and machine learning in environmental science
Publicado: 17/6/2020 -
37. Sean Knapp - The brave new world of data engineering
Publicado: 10/6/2020 -
36. Max Welling - The future of machine learning
Publicado: 3/6/2020 -
35. Rubén Harris - Learning and looking for jobs in quarantine
Publicado: 27/5/2020 -
34. Denise Gosnell and Matthias Broecheler - You should really learn about graph databases. Here’s why.
Publicado: 20/5/2020 -
33. Roland Memisevic - Machines that can see and hear
Publicado: 13/5/2020 -
32. Bahador Khalegi - Explainable AI and AI interpretability
Publicado: 6/5/2020
Note: The TDS podcast's current run has ended. Researchers and business leaders at the forefront of the field unpack the most pressing questions around data science and AI.