60 Episodo

  1. What machine learning engineers need to know

    Publicado: 29/3/2018
  2. How to train and deploy deep learning at scale

    Publicado: 15/3/2018
  3. Using machine learning to monitor and optimize chatbots

    Publicado: 6/3/2018
  4. Unleashing the potential of reinforcement learning

    Publicado: 1/3/2018
  5. Graphs as the front end for machine learning

    Publicado: 15/2/2018
  6. Machine learning needs machine teaching

    Publicado: 1/2/2018
  7. How machine learning can be used to write more secure computer programs

    Publicado: 18/1/2018
  8. Bringing AI into the enterprise

    Publicado: 4/1/2018
  9. How machine learning will accelerate data management systems

    Publicado: 21/12/2017
  10. Machine learning at Spotify: You are what you stream

    Publicado: 7/12/2017
  11. The current state of Apache Kafka

    Publicado: 22/11/2017
  12. Building a natural language processing library for Apache Spark

    Publicado: 9/11/2017
  13. Machine intelligence for content distribution, logistics, smarter cities, and more

    Publicado: 26/10/2017
  14. Vehicle-to-vehicle communication networks can help fuel smart cities

    Publicado: 12/10/2017
  15. Transforming organizations through analytics centers of excellence

    Publicado: 28/9/2017
  16. The state of machine learning in Apache Spark

    Publicado: 14/9/2017
  17. Effective mechanisms for searching the space of machine learning algorithms

    Publicado: 31/8/2017
  18. How Ray makes continuous learning accessible and easy to scale

    Publicado: 17/8/2017
  19. Why AI and machine learning researchers are beginning to embrace PyTorch

    Publicado: 3/8/2017
  20. How big data and AI will reshape the automotive industry

    Publicado: 20/7/2017

3 / 3

The O'Reilly Data Show Podcast explores the opportunities and techniques driving big data, data science, and AI.

Visit the podcast's native language site