60 Episodo

  1. Machine learning for operational analytics and business intelligence

    Publicado: 10/10/2019
  2. Machine learning and analytics for time series data

    Publicado: 26/9/2019
  3. Understanding deep neural networks

    Publicado: 12/9/2019
  4. Becoming a machine learning practitioner

    Publicado: 29/8/2019
  5. Labeling, transforming, and structuring training data sets for machine learning

    Publicado: 15/8/2019
  6. Make data science more useful

    Publicado: 1/8/2019
  7. Acquiring and sharing high-quality data

    Publicado: 18/7/2019
  8. Tools for machine learning development

    Publicado: 3/7/2019
  9. Enabling end-to-end machine learning pipelines in real-world applications

    Publicado: 20/6/2019
  10. Bringing scalable real-time analytics to the enterprise

    Publicado: 9/6/2019
  11. Applications of data science and machine learning in financial services

    Publicado: 23/5/2019
  12. Real-time entity resolution made accessible

    Publicado: 9/5/2019
  13. Why companies are in need of data lineage solutions

    Publicado: 25/4/2019
  14. What data scientists and data engineers can do with current generation serverless technologies

    Publicado: 11/4/2019
  15. It’s time for data scientists to collaborate with researchers in other disciplines

    Publicado: 28/3/2019
  16. Algorithms are shaping our lives—here’s how we wrest back control

    Publicado: 14/3/2019
  17. Why your attention is like a piece of contested territory

    Publicado: 28/2/2019
  18. The technical, societal, and cultural challenges that come with the rise of fake media

    Publicado: 14/2/2019
  19. Using machine learning and analytics to attract and retain employees

    Publicado: 31/1/2019
  20. How machine learning impacts information security

    Publicado: 17/1/2019

1 / 3

The O'Reilly Data Show Podcast explores the opportunities and techniques driving big data, data science, and AI.

Visit the podcast's native language site