MLOps.community
Un pódcast de Demetrios Brinkmann
Categorías:
383 Episodo
-
Design and Development Principles for LLMOps // Andy McMahon // #254
Publicado: 20/8/2024 -
Data Quality = Quality AI // AIQCON Panel
Publicado: 16/8/2024 -
The Variational Book // Yuri Plotkin // #253
Publicado: 13/8/2024 -
Vision and Strategies for Attracting & Driving AI Talents in High Growth // Panel // AIQCON
Publicado: 9/8/2024 -
Red Teaming LLMs // Ron Heichman // #252
Publicado: 6/8/2024 -
Balancing Speed and Safety // Panel // AIQCON
Publicado: 2/8/2024 -
Reliable LLM Products, Fueled by Feedback // Chinar Movsisyan // #251
Publicado: 30/7/2024 -
A Blueprint for Scalable & Reliable Enterprise AI/ML Systems // Panel // AIQCON
Publicado: 26/7/2024 -
AI Operations Without Fundamental Engineering Discipline // Nikhil Suresh // #250
Publicado: 23/7/2024 -
AI in Healthcare // Eric Landry // #249
Publicado: 19/7/2024 -
Evaluating the Effectiveness of Large Language Models: Challenges and Insights // Aniket Singh // #248
Publicado: 16/7/2024 -
Extending AI: From Industry to Innovation // Sophia Rowland & David Weik // #246
Publicado: 12/7/2024 -
Detecting Harmful Content at Scale // Matar Haller // #245
Publicado: 9/7/2024 -
All Data Scientists Should Learn Software Engineering Principles // Catherine Nelson // #245
Publicado: 5/7/2024 -
Meta GenAI Infra Blog Review // Special MLOps Podcast
Publicado: 3/7/2024 -
AI Agents for Consumers // Shaun Wei // #244
Publicado: 28/6/2024 -
ML and AI as Distinct Control Systems in Heavy Industrial Settings // Richard Howes // #243
Publicado: 25/6/2024 -
Accelerating Multimodal AI // Ethan Rosenthal // #242
Publicado: 21/6/2024 -
Navigating the AI Frontier: The Power of Synthetic Data and Agent Evaluations in LLM Development // Boris Selitser // #241
Publicado: 18/6/2024 -
How to Build Production-Ready AI Models for Manufacturing // [Exclusive] LatticeFlow Roundtable
Publicado: 14/6/2024
Weekly talks and fireside chats about everything that has to do with the new space emerging around DevOps for Machine Learning aka MLOps aka Machine Learning Operations.