571 Episodo

  1. Self Driving Cars and Pedestrians

    Publicado: 18/4/2020
  2. Computer Vision is Not Perfect

    Publicado: 10/4/2020
  3. Uncertainty Representations

    Publicado: 4/4/2020
  4. AlphaGo, COVID-19 Contact Tracing and New Data Set

    Publicado: 28/3/2020
  5. Visualizing Uncertainty

    Publicado: 20/3/2020
  6. Interpretability Tooling

    Publicado: 13/3/2020
  7. Shapley Values

    Publicado: 6/3/2020
  8. Anchors as Explanations

    Publicado: 28/2/2020
  9. Mathematical Models of Ecological Systems

    Publicado: 22/2/2020
  10. Adversarial Explanations

    Publicado: 14/2/2020
  11. ObjectNet

    Publicado: 7/2/2020
  12. Visualization and Interpretability

    Publicado: 31/1/2020
  13. Interpretable One Shot Learning

    Publicado: 26/1/2020
  14. Fooling Computer Vision

    Publicado: 22/1/2020
  15. Algorithmic Fairness

    Publicado: 14/1/2020
  16. Interpretability

    Publicado: 7/1/2020
  17. NLP in 2019

    Publicado: 31/12/2019
  18. The Limits of NLP

    Publicado: 24/12/2019
  19. Jumpstart Your ML Project

    Publicado: 15/12/2019
  20. Serverless NLP Model Training

    Publicado: 10/12/2019

14 / 29

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.

Visit the podcast's native language site