Best AI papers explained
Un pódcast de Enoch H. Kang
518 Episodo
-  Planning anything with rigor: general-purpose zero-shot planning with llm-based formalized programmingPublicado: 28/5/2025
-  Automated Design of Agentic SystemsPublicado: 28/5/2025
-  What’s the Magic Word? A Control Theory of LLM PromptingPublicado: 28/5/2025
-  BoNBoN Alignment for Large Language Models and the Sweetness of Best-of-n SamplingPublicado: 27/5/2025
-  RL with KL penalties is better viewed as Bayesian inferencePublicado: 27/5/2025
-  Asymptotics of Language Model AlignmentPublicado: 27/5/2025
-  Qwen 2.5, RL, and Random RewardsPublicado: 27/5/2025
-  Theoretical guarantees on the best-of-n alignment policyPublicado: 27/5/2025
-  Score Matching Enables Causal Discovery of Nonlinear Additive Noise ModelsPublicado: 27/5/2025
-  Improved Techniques for Training Score-Based Generative ModelsPublicado: 27/5/2025
-  Your Pre-trained LLM is Secretly an Unsupervised Confidence CalibratorPublicado: 27/5/2025
-  AlphaEvolve: A coding agent for scientific and algorithmic discoveryPublicado: 27/5/2025
-  Harnessing the Universal Geometry of EmbeddingsPublicado: 27/5/2025
-  Goal Inference using Reward-Producing Programs in a Novel Physics EnvironmentPublicado: 27/5/2025
-  Trial-Error-Explain In-Context Learning for Personalized Text GenerationPublicado: 27/5/2025
-  Reinforcement Learning for Reasoning in Large Language Models with One Training ExamplePublicado: 27/5/2025
-  Test-Time Reinforcement Learning (TTRL)Publicado: 27/5/2025
-  Interpreting Emergent Planning in Model-Free Reinforcement LearningPublicado: 26/5/2025
-  Agentic Reward Modeling_Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward SystemsPublicado: 26/5/2025
-  Beyond Reward Hacking: Causal Rewards for Large LanguageModel AlignmentPublicado: 26/5/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
