Max Schwarzer

TalkRL: The Reinforcement Learning Podcast - Un pódcast de Robin Ranjit Singh Chauhan

Categorías:

Max Schwarzer is a PhD student at Mila, with Aaron Courville and Marc Bellemare, interested in RL scaling, representation learning for RL, and RL for science.  Max spent the last 1.5 years at Google Brain/DeepMind, and is now at Apple Machine Learning Research.   Featured References Bigger, Better, Faster: Human-level Atari with human-level efficiency  Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc Bellemare, Rishabh Agarwal, Pablo Samuel Castro  Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier Pierluca D'Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, Aaron Courville  The Primacy Bias in Deep Reinforcement Learning Evgenii Nikishin, Max Schwarzer, Pierluca D'Oro, Pierre-Luc Bacon, Aaron Courville  Additional References   Rainbow: Combining Improvements in Deep Reinforcement Learning, Hessel et al 2017  When to use parametric models in reinforcement learning? Hasselt et al 2019 Data-Efficient Reinforcement Learning with Self-Predictive Representations, Schwarzer et al 2020  Pretraining Representations for Data-Efficient Reinforcement Learning, Schwarzer et al 2021  

Visit the podcast's native language site