Stress Testing Kafka And Cassandra For Real-Time Anomaly Detection - Episode 87

Data Engineering Podcast - Un pódcast de Tobias Macey - Domingos

Categorías:

Anomaly detection is a capability that is useful in a variety of problem domains, including finance, internet of things, and systems monitoring. Scaling the volume of events that can be processed in real-time can be challenging, so Paul Brebner from Instaclustr set out to see how far he could push Kafka and Cassandra for this use case. In this interview he explains the system design that he tested, his findings for how these tools were able to work together, and how they behaved at different orders of scale. It was an interesting conversation about how he stress tested the Instaclustr managed service for benchmarking an application that has real-world utility.

Visit the podcast's native language site